98 research outputs found

    Intercalation and delamination of layered carbides and carbonitrides

    Get PDF
    Intercalation and delamination of two-dimensional solids in many cases is a requisite step for exploiting their unique properties. Herein we report on the intercalation of two-dimensional Ti3C2, Ti3CN and TiNbC—so called MXenes. Intercalation of hydrazine, and its co-intercalation with N,N-dimethylformamide, resulted in increases of the c-lattice parameters of surface functionalized f-Ti3C2, from 19.5 to 25.48 and 26.8 Å, respectively. Urea is also intercalated into f-Ti3C2. Molecular dynamics simulations suggest that a hydrazine monolayer intercalates between f-Ti3C2 layers. Hydrazine is also intercalated into f-Ti3CN and f-TiNbC. When dimethyl sulphoxide is intercalated into f-Ti3C2, followed by sonication in water, the f-Ti3C2 is delaminated forming a stable colloidal solution that is in turn filtered to produce MXene ‘paper’. The latter shows excellent Li-ion capacity at extremely high charging rates

    Surface functionalisation of nanodiamonds for human neural stem cell adhesion and proliferation.

    Get PDF
    Biological systems interact with nanostructured materials on a sub-cellular level. These interactions may govern cell behaviour and the precise control of a nanomaterial's structure and surface chemistry allow for a high degree of tunability to be achieved. Cells are surrounded by an extra-cellular matrix with nano-topographical properties. Diamond based materials, and specifically nanostructured diamond has attracted much attention due to its extreme electrical and mechanical properties, chemical inertness and biocompatibility. Here the interaction of nanodiamond monolayers with human Neural Stem Cells (hNSCs) has been investigated. The effect of altering surface functionalisation of nanodiamonds on hNSC adhesion and proliferation has shown that confluent cellular attachment occurs on oxygen terminated nanodiamonds (O-NDs), but not on hydrogen terminated nanodiamonds (H-NDs). Analysis of H and O-NDs by Atomic Force Microscopy, contact angle measurements and protein adsorption suggests that differences in topography, wettability, surface charge and protein adsorption of these surfaces may underlie the difference in cellular adhesion of hNSCs reported here

    Functionalization of Carbon Nanomaterial Surface by Doxorubicin and Antibodies to Tumor Markers

    Get PDF
    The actual task of oncology is effective treatment of cancer while causing a minimum harm to the patient. The appearance of polymer nanomaterials and technologies launched new applications and approaches of delivery and release of anticancer drugs. The goal of work was to test ultra dispersed diamonds (UDDs) and onion-like carbon (OLCs) as new vehicles for delivery of antitumor drug (doxorubicin (DOX)) and specific antibodies to tumor receptors. Stable compounds of UDDs and OLCs with DOX were obtained. As results of work, an effectiveness of functionalization was 2.94 % w/w for OLC-DOX and 2.98 % w/w for UDD-DOX. Also, there was demonstrated that UDD-DOX and OLC-DOX constructs had dose-dependent cytotoxic effect on tumor cells in the presence of trypsin. The survival of adenocarcinoma cells reduced from 52 to 28 % in case of incubation with the UDD-DOX in concentrations from 8.4–2.5 to 670–20 μg/ml and from 72 to 30 % after incubation with OLC-DOX. Simultaneously, antibodies to epidermal growth factor maintained 75 % of the functional activity and specificity after matrix-assisted pulsed laser evaporation deposition. Thus, the conclusion has been made about the prospects of selected new methods and approaches for creating an antitumor agent with capabilities targeted delivery of drugs

    Nanodiamonds for device applications: An investigation of the properties of boron-doped detonation nanodiamonds

    Get PDF
    © 2018 The Author(s). The inclusion of boron within nanodiamonds to create semiconducting properties would create a new class of applications in the field of nanodiamond electronics. Theoretical studies have differed in their conclusions as to whether nm-scale NDs would support a stable substitutional boron state, or whether such a state would be unstable, with boron instead aggregating or attaching to edge structures. In the present study detonation-derived NDs with purposefully added boron during the detonation process have been studied with a wide range of experimental techniques. The DNDs are of ~4 nm in size, and have been studied with CL, PL, Raman and IR spectroscopies, AFM and HR-TEM and electrically measured with impedance spectroscopy; it is apparent that the B-DNDs studied here do indeed support substitutional boron species and hence will be acting as semiconducting diamond nanoparticles. Evidence for moderate doping levels in some particles (∼10 17 B cm -3 ), is found alongside the observation that some particles are heavily doped (∼10 20 B cm -3 ) and likely to be quasi-metallic in character. The current study has therefore shown that substitutional boron doping in nm NDs is in fact possible, opening-up the path to a whole host of new applications for this interesting class of nano-particles

    Mechanism of adsorption of actives onto microporous functionalised calcium carbonate (FCC)

    Get PDF
    Microporous ‘functionalised’ calcium carbonate (FCC) has potential for use as a carrier for the controlled release of ‘actives’, by permeation and diffusion. We have investigated the nature of the FCC surface and the mechanism of adsorption of two typical actives, namely the anti-inflammatory drug aspirin and the flavour compound vanillin, from chloroform and aqueous ethanolic solutions. There is indirect evidence from the quantitative perturbation of Tóth isotherms that their adsorption is hindered by a stagnant diffusion layer of water trapped in the micro-porosity of the FCC. To complement previous studies of the surface of FCC, it was also tested with the cationic probe benzyltrimethylammonium bromide and the anionic probe sodium 2-naphthalenesulphonate. Experimental procedures were validated by comparison with adsorption onto ground calcium carbonate and high surface area talc

    Diamond gets harder

    No full text
    • …
    corecore